Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS
نویسندگان
چکیده
A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM.
منابع مشابه
β-Sitosterol Lithospermate from Salvia Columbariae
Salvia columbariae extracts were examined for the presence of salvianolic acids by HPLC-MS and NMR. A new salvianolic acid, β-sitosterol lithospermic acid, was found.
متن کاملMetabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy
Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used...
متن کاملMetabolomics diagnostic approach to mustard airway diseases: a preliminary study
Objective(s): This study aims to evaluate combined proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) metabolic profiling approaches, for discriminating between mustard airway diseases (MADs) and healthy controls and for providing biochemical information on this disease. Materials and Methods: In the present study, analysis of serum samples ...
متن کاملMechanism of solvolysis of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1-phenylpyrrole-3,4-dicarboximide (PDI).
The stability of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1-phenylpyrrole-3,4-dicarboximide (PDI; a derivative with an analgesic activity) was studied in order to investigate its degradation mechanism and identify its degradation products in aqueous-organic solutions. The stability of PDI and its two degradation products (A and B) was performed with an HPLC method: (LiChrospher ...
متن کاملSolar Photocatalytic Degradation of Diclofenac by N-Doped TiO2 Nanoparticles Synthesized by Ultrasound
Anatase N-doped TiO2 nanoparticles were synthesized using ultrasound at low frequency and room temperature. The samples characterized by techniques including XRD, TEM, HRTEM, FT-IR, XPS, and UV–Vis spectroscopy. XPS indicated the existence of nitrogen as an anion dopant within the TiO2 lattice. The solar photocatalytic activity of N-doped TiO2 studied for th...
متن کامل